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Abstract—This paper presents a data-driven methodology
for linear embedding of nonlinear systems. Utilizing structural
knowledge of general nonlinear dynamics, the authors exploit
the Koopman operator to develop a systematic, data-driven
approach for constructing a linear representation in terms of
higher order derivatives of the underlying nonlinear dynamics.
With the linear representation, the nonlinear system is then
controlled with an LQR feedback policy, the gains of which need
to be calculated only once. As a result, the approach enables fast
control synthesis. We demonstrate the efficacy of the approach
with simulations and experimental results on the modeling and
control of a tail-actuated robotic fish and show that the proposed
policy is comparable to backstepping control. To the best of our
knowledge, this is the first experimental validation of Koopman-
based LQR control.

I. INTRODUCTION

Optimal control theory has reached a level of maturity such
that there are a number of available schemes suitable for prob-
lems with known dynamics. Examples of such include linear
quadratic regulator (LQR) [1], linear model predictive control
(LMPC) [2], nonlinear model predictive control (NMPC) [3],
feedback linearization [4], differential dynamic programming
(DDP) [5], sequential action control (SAC) [6] and variants
of the above [7]–[9]. The plethora of available techniques
allows one to compute satisfactory solutions for nonlinear
and high-dimensional systems. At the same time, it is often
imperative that control solutions be calculated in real time. Un-
fortunately, the high nonlinearity and dimensionality present
in many robotic systems are often an obstacle to the real-time
implementation of nonlinear feedback control schemes [10].
Further, many robotic applications involve dynamics that are
unknown, or ever-changing. These challenges call for feedback
policies that can use data to adapt their models [11] and that
make the necessary approximations to reach a good balance
between model accuracy and computational efficiency. This
is why, together with the evolution of machine learning tools,
there is increasing interest in data-driven modeling and control
approaches that can run in real-time.

In light of these challenges, the Koopman operator has
recently drawn attention in the robotics community, as it can
help address both the difficulty with nonlinearity, as well
as the need to incorporate data in the model [12], [13].
Specifically, the Koopman operator propagates a nonlinear
system in a linear manner without loss of accuracy by evolving
functions of the states, termed observables [14]. The linear

representation allows one to control the nonlinear system using
tools from linear optimal control [15], [16], which is typically
much easier and faster to implement than nonlinear methods.
As a result, it enables online feedback for high-dimensional
nonlinear systems. Interestingly enough, beyond the reduction
in feedback complexity, controlling the linear representation
instead of the original nonlinear system can even lead to better
performance [17].

The Koopman operator can be readily combined with ma-
chine learning tools to help learn unknown dynamics from
data [18]–[24]. With regard to robotic tasks involving fluid
environments, uncertain terrains or other complicated dynam-
ics such as those of bipedal walking or running, the ability
to use data to learn or adapt the model is significant. As a
result, the Koopman operator is a promising framework for
data-driven system identification. More importantly, however,
and as we detail later in Section II, the Koopman operator
framework differs from standard system identification schemes
in that it places the learning task in the context of seeking
linear transformations of the states, which is useful for control
purposes [25]–[27].

A downside of the Koopman operator, however, is that,
unless a finite-dimensional invariant subspace exists [17], it
is infinite-dimensional and presents practical challenges in
modeling and control. For this reason, recent studies try to
obtain a finite-dimensional approximation to the Koopman
operator that describes the dynamics with high fidelity [13],
[16]. In this trade-off between the dimensionality and the
modeling error of the linear representation, the challenge
becomes finding the minimum number of basis functions for
the desired accuracy [24]. Choosing observable functions that
best approximate the Koopman operator, however, remains an
open research question. To the best of our knowledge, there
has not been a systematic way of choosing the Koopman basis
functions for general nonlinear systems. Rather, most efforts
have relied on trial-and-error [28] and machine learning tools
[24], or are system-specific [12].

In this work, we introduce a way of constructing the basis
functions for the Koopman operator using higher-order deriva-
tives of general, but known, nonlinear dynamics, where the
values of the linear coefficients may be unknown. Using a data-
driven, least-squares technique with a closed-form solution,
we obtain the coefficients for the linear transformation, based
upon which an LQR policy is found. In particular, the LQR



gains need to be computed only once and the actual feedback
control value is computed online with negligible cost. As a
result, our approach differs from other data-driven efforts that
require more intensive online calculations of the control [28].
We validate our approach with simulation and experimental
results using a tail-actuated robotic fish and compare our
method to backstepping control, a sophisticated and well-
studied feedback scheme [29]–[31].

The organization of the paper is as follows. Section II re-
views the Koopman operator and explains how it is used in the
present study for data-driven control. Section III describes the
control synthesis approach that uses LQR feedback. Section
IV illustrates the approach and demonstrates its performance
using the system of a tail-actuated robotic fish. Section V
discusses the findings of this paper, as well as ideas for further
expanding this work.

II. KOOPMAN OPERATOR

This section reviews the Koopman operator, methods to
obtain a finite approximation of the operator, and explains its
relevance to system identification and optimal control.

The Koopman operator K is an infinite-dimensional linear
operator that evolves functions of the state s ∈ Rn (i.e., Ψ(s),
commonly referred to as observables) of a dynamical system.
That is,

d

dt
Ψ(s) = KΨ(s) and Ψ(sk+1) = KdΨ(sk), (1)

for continuous-time and discrete-time systems, respectively. In
other words, it allows one to evolve the nonlinear dynamics in
a linear setting without loss of accuracy. Contrary to dynamics
that are linearized around a fixed point and become inaccurate
away from the linearization point, the Koopman operator
evolves a nonlinear system with full fidelity throughout the
state space.

Expressing nonlinear systems in a linear manner is a de-
sirable property for many reasons. For example, Koopman
eigenfunctions reveal state partitions along which the nonlinear
dynamics evolve linearly. The ability to obtain geometric prop-
erties of nonlinear systems using the Koopman eigenvalues has
drawn the attention of the scientific community. Work in [32],
for example, investigates the global stability of a system using
the eigenfunctions of the Koopman operator, whereas work in
[33] extends the local linearization around a stationary point
to the whole basin of attraction.

In addition to studying the behavior of complex systems,
the Koopman framework enables the use of feedback that
is as simple as linear optimal control, while capturing the
original nonlinear dynamics. The ability to control complex
systems with linear feedback is rather promising for robotic
applications that remain challenging with nonlinear schemes,
such as underwater locomotion. At the same time, the infinite-
dimensional nature of the Koopman operator renders any
practical use prohibitive.

A. Koopman Invariant Subspaces

There exist nonlinear systems that admit a finite-
dimensional linear Koopman representation. Work in [17]
shows that, for certain systems, there exist Koopman invariant
subspaces that lead to finite-dimensional linear representations
of nonlinear systems. The authors also demonstrate that the
LQR control based on the linear representation could outper-
form LQR control calculated based on the original, nonlinear
dynamics [34]. Unfortunately, Koopman invariant subspaces
have only been found for a limited class of polynomial
systems. Even more, there is no finite-dimensional Koopman
invariant subspace for systems with multiple fixed points; the
representation of the Koopman operator has no closure [17].

Recent studies have focused on approximating the infinite
dimensional operator K with a finite representation K̃ ∈ Rw×w
that captures the original nonlinear dynamics with acceptable
accuracy [13], [16]. These efforts have largely benefited from
advances in machine learning, which make it possible to use
data-driven regression schemes to obtain a finite-dimensional
approximation to the Koopman operator. In this paper, we
adopt the least-squares method shown in [13], which we detail
next.

B. Data-driven Finite-dimensional Approximation to Koop-
man Operators

In the absence of a finite-dimensional Koopman invariant
subspace, a linear propagation of the states will induce errors.
The challenge is then to obtain an approximation to the
Koopman operator that will linearly evolve the nonlinear
system with tolerable error.

To obtain an approximation to the Koopman operator,
K̃, one chooses a set of observable functions Ψ(s) =
[ψ1(s), ψ2(s), . . . , ψw(s)] ∈ Rw (which can include the states
themselves) and uses data to solve a least-squares minimiza-
tion problem. To allow for the effect of actuation, (1) is
modified such that the observables include control terms as
well [16], [28]. For the discrete-time case, this minimization
takes the form

K̃∗d = argmin
K̃d

P−1∑
k=0

1

2
‖Ψ(sk+1, uk+1)− K̃dΨ(sk, uk)‖2, (2)

where P is the number of measurements. Each measurement
is a set of an initial state sk, final state sk+1, and the actuation
applied at the same instants, uk and uk+1, respectively.

The above expression has a closed-form solution, given by

K̃∗d = AG†, (3)

where

A =
1

P

P−1∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)T

G =
1

P

P−1∑
k=0

Ψ(sk, uk)Ψ(sk, uk)T

(4)

and † is the Moore-Penrose pseudoinverse. For a derivation
of (3), the reader can refer to the Appendix. Note that the



time spacing δt between measurements sk and sk+1 must
be consistent for all P training measurements. Last, one
can switch between the continuous-time and discrete-time
operators via K = log(Kd)/ts, where ts is the time between
measurements sk and sk+1.

We should note that the data-driven approximation of the
Koopman operator is not inherently different from other sys-
tem identification techniques. The Koopman operator can be
approximated using any of the standard regression techniques,
such as ridge or lasso regression [35], [36]. However, the
Koopman operator places the system identification task in a
meaningful context. Contrary to system identification tools that
may try to estimate unknown parameters or, more generally,
the nonlinear dynamics of a system [23], [37], searching for
a data-driven Koopman operator translates to searching for a
linear representation of the nonlinear system.

C. Synthesis of Basis Functions

Here, we motivate the use of higher-order derivatives of
known nonlinear dynamics to populate the observables. The
proposed method is a data-driven way of constructing the
observables in order to approximate a Koopman invariant sub-
space with a finite number of functions. We should note that
the method is not meant to contribute to system identification
of completely unknown dynamics, but rather to capturing with
minimal error the evolution of an existing nonlinear model
using a linear representation for the purposes of computational
efficiency and control performance. As such, it does require
that a model of the dynamics already exists, but not requiring
that the linear coefficients of the terms are known. When one
is not available, system identification tools can be used, such
as in [23], to characterize the underlying system.

This method is inspired by work in [17] and [34]. The
former study identifies Koopman invariant subspaces for a
very limited class of nonlinear systems (whose dynamics
have a specific polynomial structure). Their proposed method-
ology of populating the Koopman observable functions is
using the Carleman linearization approach, appropriate for
the types of systems they consider. Despite commenting on
the challenge of non-closure, their approach is specific to
polynomial systems. Further, their suggested approach is to
identify eigenfunctions from data and use those for control,
which they illustrate in [34].

For the systems shown to admit a finite-dimensional Koop-
man invariant subspace, it is straightforward to show that
the terms in the observable function Ψ(s) capture all higher-
order derivatives of the original states. This is precisely the
reason why the linear representation matches the nonlinear
dynamics with no error. In cases where an invariant subspace
has not been found, there is no closure of the higher-order
derivatives. However, this way of reasoning allows one to infer
information about the priority of certain functions over others
in populating Ψ(sk). That is, the evolution of a nonlinear
equation ẋ(t) = g(t) can be approximated with a Taylor series

as

g(t) ≈ g(t0) + g′(t)

∣∣∣∣
t=t0

δt+
1

2
g′′(t)

∣∣∣∣
t=t0

δt2 + . . .

+ g(n)(t)

∣∣∣∣
t=t0

δtn

n!

=
[
1 δt δt2

2 . . . δtn

n!

]

g(t0)
g′(t0)
g′′(t0)

...
g(n)(t0)

 , (5)

where δt = t− t0.
For a fixed t, (5) can be written in the form of (1), where

the derivatives of the function g(t) are equivalent to the
observables Ψ(sk). That is,


g(t)
g′(t)
g′′(t)

...
g(n)(t)


︸ ︷︷ ︸

Ψ(sk+1)

≈


1 δt δt2

2 . . . δtn

n!

0 1 δt . . . δtn−1

(n−1)!

0 0 1 . . . δtn−2

(n−2)!

...
...

... . . .
...

0 0 0 . . . 1


︸ ︷︷ ︸

K̃d


g(t0)
g′(t0)
g′′(t0)

...
g(n)(t0)


︸ ︷︷ ︸

Ψ(sk))

. (6)

For t close to t0, it suffices in (5) to just use the first few
derivatives, where each additional derivative has a decreasing
effect on the update of the function g(t) considered. Note
that, in (6), all derivatives of g(t) are assumed to be different
functions. Further, the highest derivative is not propagated at
all with this representation.

We argue that populating the observables Ψ(sk) with the
next higher-order derivatives instead of randomly choosing
basis functions generates, locally in time, the most accurate
linear representation of the nonlinear dynamics. However,
due to the fact that there is no closure of the higher-order
derivatives and the series will have to be truncated at some
point, the analytical expression of (6) would lead to a very
inaccurate Koopman operator, as is commented in [17]. For
this reason, we use data-driven techniques to approximate K̃d,
as shown in Section II. B, even when a model is known, to
propagate, more accurately than an analytical model of the
form in (6), the last derivatives in terms of existing terms in
the observables.

In other words, linearly representing nonlinear dynamics
without error requires the existence of Koopman invariant
subspaces. The latter are formed by populating the observable
functions with higher-order derivatives and provided that there
is a finite-dimensional closure. Even when no closure exists,
populating the basis functions with higher-order derivatives
creates increasingly better approximations to the invariant
subspaces. Data-driven methods can then be used to improve
the linear approximation of the nonlinear dynamics.



III. LQR ON KOOPMAN OPERATOR

Consider a linear system with states s ∈ Rn, control u ∈
Rm, dynamics given by

d

dt
s = As+Bu, (7)

and a performance objective

J =

∫ ∞
0

(s− sdes)TQ(s− sdes) + uTRudt, (8)

where Q � 0 ∈ Rn×n and R � 0 ∈ Rm×m are weights on
the deviation from the desired states and the applied control,
respectively. For linear systems of the form in (7), the linear
quadratic regulator (LQR) controller calculates the minimizer
to (8) in one iteration [1]. The control solution has the form
of a state feedback law of the form

u = −KLQR(s− sdes), (9)

where KLQR ∈ Rm×n, the LQR gains, need to be calculated
only once for each minimization task defined by (8). Next, we
show how we modify the LQ optimization problem to control
the Koopman representation of a nonlinear system.

Consider an approximate Koopman operator K̃, such that

d

dt
Ψ(s, u) ≈ K̃Ψ(s, u). (10)

Let Ψ(s, u) = [Ψs(s),Ψs,u(s, u)]T , where Ψs(s) ∈ Rws are
the functions that depend only on the states, and Ψs,u(s, u) ∈
Rwu are those that depend on the input as well, where w =
ws + wu. This notation allows us to re-write (10) as

d

dt

[
Ψs(s)

Ψs,u(s, u)

]
≈
[
K̃s K̃s,u
K̃u,s K̃u,u

] [
Ψs(s)

Ψs,u(s, u)

]
, (11)

where K̃s ∈ Rws×ws and K̃s,u ∈ Rws×wu are sub-matrices
of K̃ that describe the dynamics of the functions Ψs(s) that
depend only on the states. Note that the dynamical equation
(10) has been modified from (1) to allow for control inputs
[16], [28].

In order to obtain a state- and control-affine form, we can
linearize the Koopman representation with respect to Ψs(s)
and u. Note that in the Koopman representation, the states are
expanded from s to Ψs (which can include the states s of the
original system, too). We can then write

d

dt
Ψs(s) ≈

∂

∂Ψs(s)
(K̃sΨs(s) + K̃s,uΨs,u(s, u)) ·Ψs(s)

+
∂

∂u
(K̃sΨs(s) + K̃s,uΨs,u(s, u)) · u

= (K̃s + K̃s,u
∂

∂Ψs(s)
Ψs,u(s, u)) ·Ψs(s)

+ (K̃s,u
∂

∂u
Ψs,u(s, u)) · u. (12)

This form is equivalent to the linearized dynamics of the
original system with (K̃s + K̃s,u ∂

∂Ψs(s)Ψs,u(s, u)) ≡ A(s, u)

and (K̃s,u ∂
∂uΨs,u(s, u)) ≡ B(s) for the purposes of designing

a linear controller. This form allows one to employ linear
control policies, after evaluating the terms A(s, u) and B(s).

For the purposes of speed, we wish to avoid constantly
re-evaluating the expression in (12) when calculating the
feedback control input. To do that, we choose the basis
functions such that it is not required to re-evaluate A and B.
That is, we choose Ψs,u(s, u) = u and (12) becomes

d

dt
Ψs(s) ≈ K̃sΨs(s) + K̃s,u · u,

where K̃s and K̃s,u are fixed.1 If one wishes to update
the Koopman operator online, these matrices would vary in
response to how incoming state measurements change the
solution to (3).

Then, we define a similar optimization problem to (8)

JK̃ =

∫ ∞
0

(Ψs(s)−Ψs(sdes))
TQK̃(Ψs(s)−Ψs(sdes))

+ uTRudt, (13)

where QK̃ � 0 ∈ Rws×ws penalizes the deviation from the
desired state of the observable functions Ψ(sdes). We set

QK̃ =

[
Q 0
0 0

]
,

so that a meaningful comparison can be made with regards
to the original nonlinear system and the associated objective
shown in (8). The LQR feedback law for (13) becomes

u = −KLQR(Ψ(s)−Ψ(sdes)). (14)

Note that the control solution only updates based on the func-
tions Ψs(s), thereby significantly reducing the computational
time compared to other feedback schemes that forward-predict
the evolution of the system, compute an optimal response, and
then perform a line search over the entire time horizon to
decide the control solution.

To validate our proposed method for the synthesis of the
basis functions, we implement the Koopman-based LQR pol-
icy described in this section using a tail-actuated robotic fish,
shown in Fig. 1.

IV. RESULTS

The states of the robotic fish are s = [x, y, ψ, vx, vy, ω]T ,
where x, y are the world-frame coordinates, ψ is the orienta-
tion, vx and vy are the body-frame linear velocities (surge and
sway, respectively), and ω is the body-frame angular velocity.
We use α to indicate the angle of the tail. The tail is actuated
with α(t) = αo + αa sin(ωat), where αa, αo, ωa are the am-
plitude, bias, and frequency of the tail beat. The ranges of the
bias and the amplitude are α0 ∈ [−50◦, 50◦] and αa ∈ [0, 30◦],
respectively. To simplify the problem, we keep the frequency
fixed at ωa = 2π rad/s. These actuation constraints are applied
throughout the simulations and experiments.

1Choosing Ψs,u(s, u) = u allows us to simplify (12) at the expense,
however, of less accurate approximation of the dynamics. For example, if
cos(x)u appears in the dynamics, it will be approximated in the Koopman
model as c1u, where c1 ∈ R.



Fig. 1: Tail-actuated robotic fish used in the experiments,
developed by the Smart Microsystems Lab at Michigan State
University. It maneuvers in water by oscillating its tail fin.

We then describe the dynamics of the system with an
average model suitable for tail-actuated systems [38] given
by

ṡ =


ẋ
ż

ψ̇
v̇x
v̇y
ω̇

 = f(s)
4
=


vx cos(ψ)− vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

ω
f1(s) +Kff4(α0, αa, ωa)
f2(s) +Kff5(α0, αa, ωa)
f3(s) +Kmf6(α0, αa, ωa)

 , (15)

where

f1(s) =
m2

m1
vyω −

c1
m1

vx

√
v2
x + v2

y +
c2
m1

vy

√
v2
x + v2

y arctan(
vy
vx

)

f2(s) = − m1

m2
vxω −

c1
m2

vy

√
v2
x + v2

y −
c2
m2

vx

√
v2
x + v2

y arctan(
vy
vx

)

f3(s) = (m1 −m2)vxvy − c4 sgn(ω)ω2

f4(α0, αa, ωa) =
m

12m1
L2ω2

au1

f5(α0, αa, ωa) =
m

4m2
L2ω2

au2

f6(α0, αa, ωa) = − m

4J3
L2cω2

au2

u1 = α2
a(3− 3

2
α2
o −

3

8
α2
a)

u2 = α2
aαo

and m1 = mb −max ,m2 = mb −may , J3 = Jbz − Jaz , c1 =
1
2ρSCD, c2 = 1

2ρSCL, c4 = 1
J3
KD, c5 = 1

2J3
L2mc. Param-

eter mb is the mass of the robotic fish, max and may are
the hydrodynamic derivatives that represent the added masses
of the robotic fish along the x and y directions, respectively,
Jaz and Jbz are the added inertia effect and the inertia of the
body about the z-axis, respectively, m is the mass of the water
displaced by the tail per unit length, ρ is the water density, L
is the tail length, c is the distance from the body center to the
pivot point of the actuated tail, CD, CL,KD are drag force,
lift, and drag moment coefficients, respectively, and Kf and
Km are scaling coefficients that are measured experimentally
[39].

A. Simulation Results

In this section, we present simulation results on the data-
driven LQR control on the tail-actuated robotic fish. First,

Simulation Parameters
Parameter Value Parameter Value
mb 0.725 kg ρ 1000 kg/m3

max −0.217 kg S 0.03 m2

may −0.7888 kg CD 0.97
Jbz 2.66× 10−3 kg · m2 CL 3.9047
Jaz −7.93× 10−4 kg · m2 KD 4.5× 10−3

L 0.071 m Kf 0.7
d 0.04 m Km 0.45
c 0.105 m

TABLE I: Simulation parameters for the tail-actuated fish
model dynamics (15).

we populate the observable functions with the first-order
derivatives of the terms that appear in (15). For example,
d
dtvyω = v̇yω + vyω̇, where v̇y and ω̇ are given by (15). In
this way, we end up with the system states, the control inputs,
and 52 additional scalar functions, such that Ψx(s) ∈ R60.2

Next, we train an approximate Koopman operator using
(3). To generate data sk and sk+1, we sample P = 3000
initial conditions for the states with uniform distributions given
by Ux0

(−0.5 m, 0.5 m), Uy0(−0.1 m, 0.1 m), Uψ0
(−π/4 rad,

π/4 rad), Uvx (0, 0.04 m/s), Uvy (−0.0025 m/s, 0.0025 m/s),
Uω(−0.5 rad/s, 0.5 rad/s). For each sample, we apply ran-
dom inputs generated from a uniform distribution given by
Uα0 (−50◦, 50◦) for the tail angle bias and Uαa(0, 30◦) for the
tail angle amplitude of oscillations. Then, for each sample of
initial conditions sk and controls uk, we use dynamics (15) and
parameters shown in Table I to propagate the states with the
given control for δt = 0.005 s and obtain the final states sk+1.
We use the set of sk, sk+1, uk to compute the approximate
discrete Koopman operator (3). Note that the value of uk+1

can be arbitrary, since we are not trying to predict the evolution
of the control-dependent basis functions.

Once we have trained the Koopman operator, we convert
it to the continuous time via K̃ = log(K̃d)/δt, extract the
state- and control- linearization matrices A and B, choose the
weight matrices Q and R and compute the infinite-horizon
LQR gains.

Fig. 2 shows the performance of the system (15) using LQR-
feedback calculated from the Koopman representation. The
desired trajectory is described by sdes = [0, 0, 0, 0.02, 0, 0.05 ·
135 · π/9 · cos(0.05t+ π/2)] that generates a figure-8 shape.
The weights are Q = diag(0, 0, 0, 108, 0.01, 108) and R =
diag(0.01, 0.01). As is seen in the figure, the system tracks
the desired states successfully.

B. Experimental Results

We use the robotic fish (see Fig. 1) to collect state
measurements and train the Koopman operator. In a single

2Using separate functions for the time derivatives of each individual term
that appears in the dynamics is similar to using the time derivatives of the
entire equation of a state (e.g. v̈y(t)). Despite increasing the number of basis
functions, we prefer the first approach because it does not require knowing
the coefficients of the individual terms in advance (e.g. m2

m1
). As a result, it

can be readily used for other robotic tail-actuated fish that have a different
morphology.
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Fig. 2: LQR-controlled robotic fish in simulation. The LQR
gains are generated once using the learned Koopman operator.
The desired trajectory is given in terms of the forward and
angular velocity. Despite using fixed LQR gains, the controlled
system successfully tracks the desired trajectories that were
designed to produce a figure 8 pattern.

experimental run, we apply constant tail bias and amplitude
for the oscillations of the tail fin. We run 22 experimental runs,
with two trials for eleven different combinations of actuation
parameters. The tail beat frequency is ωa = 2π rad/s for all
runs. The actuation patterns used for the experimental data are
shown in Table II.

During the runs, an overhead camera captures the coordi-
nates and orientation of the robotic fish at about 4 Hz. We
then use Kalman filtering to estimate the body-fixed velocities
of the robotic fish. To train the Koopman operator, we need
the same time difference between pairs of measurements
sk and sk+1, as we explain in Section II. For this reason,
and to decrease the time between measurements to arbitrary
levels (without the constraints of our sampling and filtering
methods), we interpolate data at δt = 0.005 s. Last, we use
the interpolated data to obtain a Koopman operator.

To measure how well the Koopman model captures the
nonlinear dynamics of the robotic fish, we use K̃, learned
from the experimental data, to propagate the identified model
continuously based on the initial states of each of the 22
experimental runs. Then, we compare the resulting simulated
trajectories against the corresponding experimental ones. For
the purposes of illustration, we show two such comparisons
in Fig. 3. The linear Koopman model, despite not perfect,
reasonably follows the experimental data for at least five
seconds. We believe that the modeling is worsened by the
average model (15) used to describe the longer-term behavior
of the dynamics, rather than the original dynamic model. To
improve the fitness, one might wish to avoid the average
model and instead use Kirchoff’s equations for a rigid body in
fluid environment. Alternatively, one could also use a system
identification algorithm, such as SINDy [23], to first obtain a
model for the nonlinear dynamics of the system. We plan to

Actuation values
Amplitude (◦) Bias (◦)
15 0
20 0
20 40
20 45
20 50
25 0
25 45
25 50
30 0
30 45
30 50

TABLE II: Amplitude and bias for the tail-beat oscillations of
the robotic fish used to collect experimental data to train the
Koopman operator. The actuation is kept consistent through
each of the 22 runs (2 trials repeated for each combination of
the controls.
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Fig. 3: Fitness between Koopman model and experimental
measurements. The green line shows data interpolated from
experimental measurements (blue dots) every dt = 0.005 s.
The red line shows the evolution of the states using the
Koopman model. The actuation is constant for each of the
two runs and is indicated in the caption.



K
oo

pm
an

L
Q

R
Straight Line

(a)

Arc Line

(b)

Circle

(c)

B
ac

ks
te

pp
in

g

(d) (e) (f)

Fig. 4: Examples of trajectory tracking using Koopman LQR (top rows) and backstepping (botttom rows) on the tail-actuated
robotic fish. The desired trajectory is shown in blue. Feedback is implemented at 1 Hz. A video of the experiments is available
at https://youtu.be/khqU0W1Nn2g.

explore these avenues in future work.
Next, we use the Koopman operator, choose Q and R

to define the minimization problem (13), and calculate the
infinite-horizon LQR gains. We then run experiments using
the feedback policy in (14) to track a line, an arc, and a circle.
Feedback is implemented at a slow rate (1 Hz) due to speed
limitations in the image processing (about 4 Hz) used for the
estimation of the states.

We compare our method to backstepping feedback that
uses the model in (15) to calculate control responses online.
Backstepping is a widely-used method that offers a systematic
way of synthesizing control for a system in strict-feedback
form [30], [31]. Via Lyapunov analysis, it guarantees the
stability of the system and it allows the accommodation of
input constraints. Backstepping control generally requires low
computational effort, often required for online applications.

As is seen in Fig. 4, the proposed data-driven policy is com-
parable to the more sophisticated, model-based backstepping
controller. This result is promising, given that Koopman-based
LQR does not require the special form of dynamics that is
needed for backstepping control.

V. DISCUSSION AND FUTURE WORK

In this paper, we use the Koopman operator framework
to develop data-driven linear representations of nonlinear
systems, suitable for real-time feedback. We advocate for a
specific way of structuring the observable functions that aims
at minimizing the representation error. We control the data-
driven linear model using LQR feedback that requires only one
computation of the gains. We then demonstrate the efficacy of
our approach with simulation and experimental results using
a case study of a tail-actuated robotic fish.

While we validate our approach with an example of tracking
in a fluid environment, the proposed method can be used
for any system that can benefit from data-driven methods or
reduction of the nonlinearity. However, underwater robotics
is perhaps the most suitable application for this method, due
to the inherent environmental uncertainty, the highly nonlinear
dynamics, and the need for controllers that use limited compu-
tation (to preserve battery use or due to limited computational
power). While this method could certainly be applied to other
systems, it perhaps would not be as useful for low-dimensional
systems, with known dynamics and few nonlinearities.

In the future, we will extend both the experimental and
theoretical aspects of this work. Specifically, we plan on
validating our method on a gliding robotic fish moving in
the 3D underwater environment, currently under development.
We also hope to compare our method against using traditional
system identification tools to obtain the nonlinear dynamics.
Further, we wish to provide formal guarantees for the optimal-
ity of our proposed structure of the basis functions, as well
as describe a process that can provably capture a nonlinear
system in a linear setting up to the desired order of accuracy.
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VII. APPENDIX

A. Derivation of (3)
Consider the optimization problem

K̃∗d = argmin
K̃d

P−1∑
k=0

1

2
‖Ψ(sk+1, uk+1)− K̃dΨ(sk, uk)‖2.

This expression is quadratic in K̃d so we use matrix calculus
to differentiate and find the optimal solution.

0 =
∂

∂K̃d

P−1∑
k=0

1

2
‖Ψ(sk+1, uk+1)− K̃dΨ(sk, uk)‖2

=
∂

∂K̃d

P−1∑
k=0

1

2
(Ψ(sk+1, uk+1)− K̃dΨ(sk, uk))T

· (Ψ(sk+1, uk+1)− K̃dΨ(sk, uk))

=
∂

∂K̃d

P−1∑
k=0

1

2
(Ψ(sk+1, uk+1)TΨ(sk+1, uk+1)

−Ψ(sk+1, uk+1)T K̃dΨ(sk, uk))

−Ψ(sk, uk)T K̃Td Ψ(sk+1, uk+1)

+ Ψ(sk, uk)T K̃Td K̃dΨ(sk, uk)

=

P−1∑
k=0

1

2

∂

∂K̃d

[
− 2Ψ(sk+1, uk+1)T K̃dΨ(sk, uk)

+ Ψ(sk, uk)T K̃Td K̃dΨ(sk, uk)
]

=

P−1∑
k=0

1

2

[
− 2Ψ(sk+1, uk+1)Ψ(sk, uk)T

+ 2K̃dΨ(sk, uk)Ψ(sk, uk)T
]

=

P−1∑
k=0

−Ψ(sk+1, uk+1)Ψ(sk, uk)T + K̃dΨ(sk, uk)Ψ(sk, uk)T

=−
P−1∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)T

+ K̃d
P−1∑
k=0

Ψ(sk, uk)Ψ(sk, uk)T .

Using the substitutions in (4) to simplify the above terms
yields

0 = −A+ K̃dG ⇐⇒ K̃d = AG†,

where † is the Moore-Penrose pseudoinverse.

REFERENCES

[1] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. Wiley,
New York, 1972.

[2] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control
based on linear programming—the explicit solution,” IEEE Transactions
on Automatic Control, vol. 47, no. 12, pp. 1974–1985, 2002.
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